
Creating user interfaces for econometric routines
with JStatCom: An example for Gauss

Markus Krätzig

Humboldt-Universität zu Berlin, Institute for Statistics and Econometrics

mk@mk-home.de

First version: 11 November 2004

Abstract

JStatCom is a new software framework that simplifies the creation of graphical user inter-
face components for mathematical procedures. 1 It is written in Java and offers a coherent
approach to creating applications for data based analysis. Programming with JStatCom is
efficient, because existing algorithms written in various popular matrix languages can be
reused with little or no changes required. The paper shows how this system can be applied
to provide an existing Gauss program with a feature-rich graphical user interface with rel-
atively little effort. One of the advantages of the presented approach is the strict separation
of user interface and algorithm code. Although the framework provides standard solutions
for common tasks, it can be extended and customized in various directions.

Key words:
Java, Object-Oriented Programming, Gauss, Econometrics, Software Engineering

1 Introduction

This text gives an introductory example on how to use the software framework JS-
tatCom. The example demonstrates, how a graphical user interface for a statistical
test could be implemented. This is a relatively simple but realistic scenario. The
underlying algorithm is implemented in the Gauss programming language which is
typical for econometrics. Readers who consider using the software framework for
similar purposes are encouraged to follow the described steps and try it out.

The example uses the Eclipse Integrated Development Environment (IDE) which
is an open-source project sponsored by IBM. This software is very popular in the

1 The URL is www.jstatcom.com.

Java community, also because it is freely available. But it should be stressed that
this is just one tool among others and that the use of JStatCom is by no means
related to any specific software development tool. Although not recommended, a
simple text editor for Java coding would also be sufficient. Because this example
should be reproducible, every step is documented including the setup of a project
for the Eclipse IDE. Experienced Java developers can certainly skip those sections.
Furthermore, it should be mentioned that the example is done under the Windows
XP operating system.

2 A Step-by-Step Example

The example will implement a graphical user interface (GUI) for the ARCH-LM
test (Engle, 1982) which provides the option to select a variable to test, as well
as the number of lags to include. By pressing a button the test result should be
computed and printed to a text area.

2.1 System Requirements for this Example

• Windows 2000/XP
• working Gauss installation version 3.2 or higher

Although the Java part of JStatCom can be run on almost any platform, this demon-
stration requires an installed Gauss. The communication scheme between Gauss
and Java has only been implemented for the Windows operating system. However,
Gauss code could also be executed on other platforms with the help of the Gauss
Runtime Engine (GRTE), which is a special Gauss distribution provided by Aptech.
The GRTE allows for royalty free redistribution of compiled Gauss code that can
be executed without an installed Gauss, thus enabling developers to ship stand-
alone applications to their customers. JStatCom distinguishes between Gauss and
the GRTE, although the two engines can execute the same Gauss code. But to de-
velop with the GRTE one has to purchase a specific license first, therefore it would
not be a very good candidate for this introductory example. At least, it is more
likely to have a working Gauss installation available.

It should be mentioned, that the Gauss installation is only required to incorporate
external code. But this example can also be run without this specific algorithm
implementation. In this case the procedure for the test should be implemented in
Java, which is also an option. Therefore readers are nevertheless encouraged to
follow the remaining steps to get an idea about the workings of JStatCom.

2

2.2 Step 1: Download/Install the Java Software Development Kit (J2SE SDK)

Because Java code needs to be compiled and the created binary files (classes) must
be executed with the Java Virtual Machine (JVM), it is necessary to download
and install the current J2SE SDK from Sun, the URL is www.java.sun.com. 2 This
software is also required to run the Eclipse IDE software, because it is written in
the Java programming language as well. The installation follows a standard setup
routine and should pose no problems.

2.3 Step 2: Download/Install the Eclipse IDE and some Plug-ins

As already mentioned, the Eclipse IDE is just a suggestion for use as a develop-
ment tool. One of the great strengths of the Java platform is that there is excellent
tool support. Therefore it would equally be possible to apply other tools with very
similar steps.

First the IDE needs to be downloaded from www.eclipse.org/downloads. There are
usually many different packages for various purposes available which might be a
bit confusing. At the time of this writing the needed package is
eclipse-SDK-3.0.1-win32.zip. It is likely that the version number will already
have changed when reading this text. The software just needs to be unpacked to
some directory and will install itself when it is first started.

Because programming with JStatCom typically involves the layout of GUIs, a vi-
sual interface builder can speed up development significantly. Such a tool is not
part of the standard Eclipse package, but can be installed as a plug-in. The follow-
ing additional packages need to be downloaded from
www.eclipse.org/tools. The names of the relevant archives are given in brackets,
although the version numbers are likely to have changed already:

• EMF (emf-sdo-runtime-2.0.1.zip)
• GEF (GEF-SDK-3.0.1.zip)
• VE (VE-runtime-1.0.1.1.zip)

Installing those plug-ins merely requires to unpack the archives to the Eclipse in-
stallation directory and to restart the IDE. All mentioned tools can be downloaded
free of charge.

2 The most recent release is J2SE 5.0. With this version the term SDK (Software Develop-
ment Kit) changed to JDK (Java Development Kit).

3

2.4 Step 3: Download JStatCom and unpack it

The last required download is the JStatCom software framework itself, which can
be found under www.jstatcom.com. The archive jstatcom win-1.0.zip just needs
to be extracted to some folder. By default it creates a directory jstatcom. It is rec-
ommended to rename this directory to something more descriptive for the respec-
tive project. For the current example the name testproject is used.

2.5 Step 4: Create an Eclipse Project

Fig. 1. Selecting a new Java project in the Eclipse IDE

In the following it is assumed that JStatCom is located in the directory
c:\testproject. Now the Eclipse software should be started, the option to change
the workspace directory can be ignored. At first startup a help screen is presented,
it can be closed. The first step should be to create a new Java project via File -
New. The resulting dialog is presented in Figure 1. When Next is pressed Figure 2
is shown where the project name should be given, as well as the directory with the
resources. The created project can then be seen in the package browser, see Figure
3. All jar archives in the project directory have automatically been included in
the build class path, for example jstatcom.jar, jama.jar, junit.jar, etc.. By
default, all classes that will be compiled go in a subdirectory bin. But no classes
have been created so far.

4

Fig. 2. Setting project name and directory

Fig. 3. Display of the new project testproject in the package explorer

2.6 Step 5: Create a new Package and a new Class

Programming with Java usually starts with creating a class. The class to create for
this example should hold the GUI for the test and should itself be a so called internal

5

Fig. 4. Creating a new class

Fig. 5. Creating a new package

frame. This is a special component that is displayed as a window within a desktop
application.

6

Fig. 6. Specifying the new class

Fig. 7. Generated Java code for a new class

Before a new class can be created, the IDE software requires to define a directory
with the source code to compile. It will look for Java source files only there and
compiles them when changes are made. Figure 4 shows the menu that appears on a
right mouse click over the project name testproject. By selecting Source Folder
a small dialog will appear asking for the directory name which can freely be chosen,
but is typically src.

Afterwards the same menu should be used over the just created src folder, but
this time with the option Package to create a new Java package. The dialog for
this is shown in Figure 5. It is not strictly required to define packages, but it is
good programming practice. The standard for this is the reverse domain name of

7

the organization or firm that develops the Java code. Here com.myorg was used
as a placeholder. As a starting point one could also use a descriptive name, like
testproject. It can be changed at a later stage easily.

Now everything is prepared to create the first Java class. Again, the right mouse
menu should be used, this time over the newly created package
src/com.myorg with the Class option. Figure 6 shows the dialog to specify the
class to create. The name of the class can freely be chosen, but class naming conven-
tions for Java suggest that it should consist of nouns, each of them beginning with a
capital letter, for example TestFrame. As a second step it is important to choose the
superclass that the new class inherits from. By default this is just Object, the top-
level superclass of all classes in Java. However, some more functionality is needed
because the class should be a frame holding the GUI for the test. Therefore one
should select the class ModelFrame with the help of the Browse button in the su-
perclass field. It is then necessary to remove the default Object entry first and type
in the first letters of ModelFrame. The dialog will immediately display all possible
options. Figure 6 shows the result. All other options can be left unchanged.

After finishing the dialog, a Java editor window with the code for the newly created
class is shown, see Figure 7. Also, the new file is added to the package browser
in the source directory src under the Java package name com.myorg. The class
TestFrame is a subclass of ModelFrame, which is a component from the JStat-
Com system. The generated code is very short, because the new class does not yet
define own methods or fields. It inherits all functionality from its superclass. One
should consider documenting the header of TestFrame with some remarks about
the function of this component. In the example, only the author is mentioned.

8

2.7 Step 6: Layout the GUI with the Visual Editor

Fig. 8. Open class in visual builder tool

Fig. 9. Initial display, frame needs to be resized

After having set up the skeleton of the new module, the GUI should be laid out with
the help of the visual editor (VE) that has been installed via the mentioned plug-ins.

To use the VE tool in Eclipse, it is first necessary to close the Java editor window
that is currently showing TestFrame.java. Afterwards the same file should be

9

opened again in the VE by right clicking over the file TestFrame.java in the
package explorer and selecting Visual Editor, see Figure 8.

After invoking this operation, it might take a while until the VE is set up, because
this is a computationally intense operation. The initial display is shown in Figure
9. There is an area at the top where the actual state of the GUI is shown as it
would look like during runtime. The frame is displayed with its minimal size in
the beginning. The Java editor underneath shows the code that is generated by the
VE, which is nothing so far. After all, the VE is just a code generating tool and
it is also possible to do manual adjustments by editing the Java code directly. On
the right edge there is the so called Palette which provides access to many standard
Java components that can be picked and placed in the VE. It can also be used to
access all components provided by the JStatCom framework, although those are
not displayed with an icon but must be chosen via the button Choose Bean from the
palette.

Having introduced the basic features of the VE, editing can be started by resizing
the frame with the mouse and choosing a title. The title can be set by clicking in the
header of the frame, or by directly editing the properties of that component. For that
purpose, there exists the property editor of the VE, see Figure 10 at the bottom. It
should be noted, that most properties do not need to be changed from their default
value, but the title property has been set to TestFrame, lacking more innovative
ideas here. By changing the size of the frame with the mouse, the size property
is automatically changed. Properties are used to customize components and help to
speed up programming, especially for GUI layout.

Now that the TestFrame has a title and a proper size, it is required to add a panel
to hold all other components. Therefore one should select the class JPanel from
the palette and place it in the frame. Because panels are container elements, they
can be found under the Swing Containers tab, see Figure 11. Adding a JPanel is
not a very exciting operation, because visually nothing changes. It is just an empty
container. However, by looking at the Java editor one can see that some code has
been generated and the property editor is now showing the properties of the added
JPanel.

Now a small technicality is required to avoid confusions when adding new compo-
nents to the panel. By default every panel has a layout manager which computes
how components are being placed inside the container. It also adjusts their size and
placement when the container is resized. The default manager for the JPanel is
a FlowLayout. However, for this example layout management should not be dis-
cussed and it is easier to switch it off for the initial design. Therefore the property
editor should be used to set the layout property of this panel to null as shown in
Figure 12.

Having prepared the panel to hold the components, one should now select the class

10

TSSel from the palette via the Choose Bean button. Figure 13 shows the selection
dialog. After clicking OK the component can be placed on the panel inside the
frame. If the enclosing frame is still not big enough, it should be resized again.
After finishing this operation the new component is part of the TestFrame, see
Figure 14.

The chosen component is part of the JStatCom framework and is used to select
variables for time series models. It provides also a range of useful functions via a
right click popup menu over the selected variables. Furthermore, the sample range
can be adjusted. This way, complex functionality is integrated in the testing frame
which demonstrates the advantages of component based development.

However, there are some properties that need to be set to the TSSel component with
the help of the component editor. Because the class is used to select variables, it is
necessary to define under which name the data objects are stored in the so called
symbol table. JStatCom provides a mechanism to share data between components, a
feature that is, for example, also available for Matlab GUI building in a somewhat
similar way with the Matlab guidata function. This is only mentioned to show
that similar problems arise also in other systems for GUI programming. For JStat-
Com, data objects must be identified via names in the symbol table. Therefore the
property editor should be used to set these names, see Figure 15. When the TSSel
component is selected in the VE one can start editing the properties allDataName,
allStringsName, and dateRangeName. The chosen names for this example are Y,
Y NAMES, and DATE RANGE respectively.

After finishing the setup of the selection component, one still needs to add the
remaining components. JStatCom provides the special text field NumSelector to
select numbers. It should be selected and placed to the panel in the same manner as
the TSSel component, see Figure 16.

One of the features of the number selection component is that it is easily possible
to set a validating range with the help of the property editor. From Figure 17 it
can be seen how the property rangeExpr is set to the string [0, 20]. Whenever
the user specifies a lag length outside this range, an error message would appear.
Furthermore, the precision of the display is set to 0 by default, which means that
only integer values are shown with no decimal digits.

By now it should be clear how components can be added to the GUI. The remain-
ing parts are a JLabel with the string Lags, a JButton with Execute on it, and
a ResultField to display results. The latter component is provided by JStatCom,
whereas the first two are standard Swing classes and can be found directly on the
palette under Swing Components. All components should resized and placed ac-
cording to the preferences of the developer. The text of the JLabel and the Execute
button can be set by clicking on the component with the mouse or by using the
property editor and changing the text property.

11

One should not forget to save the file TestFrame.java after adding components.
This can easily be done by pressing the Ctrl-S key combination. Saving a Java
source file in the IDE automatically invokes the compilation.

12

Fig. 10. TestFrame after resize with title, properties at the bottom

13

Fig. 11. TestFrame after a JPanel has been added

Fig. 12. Setting layout manager to null, easier to handle for initial design

14

Fig. 13. Selecting the TSSel component

15

Fig. 14. TSSel component has been placed on the panel

Fig. 15. Editing properties of TSSel component

16

Fig. 16. Selecting the NumSelector component for number input

Fig. 17. Setting a validating range [0,20] to the NumSelector component

17

2.8 Step 7: Add an Action to the Execute Button

Fig. 18. Placing a JButton and creating an action

Fig. 19. Default action handler for execute button

After the basic layout of the GUI has finished, it is necessary to program an action
that is invoked when the Execute button is pressed. Without this, nothing would
happen at all. The VE also supports this task via a menu that appears on a right
click over the button, see Figure 18. The item Events - actionPerformed should be
chosen to install a default action to that component.

Figure 19 shows the Java code that has been generated by this operation. There is an
actionPerformed method which just prints out some default string. This method

18

must later be programmed ’by hand’ to gather the input from the GUI controls, to
call the external Gauss procedure, and to print the results.

2.9 Step 8: Add the Module to the Main Application Frame

Fig. 20. Editing modules.xml to insert TestFrame to list of modules

Fig. 21. Adjusting the classpath in the app.bat script

Before it is described how the algorithm for the ARCH-LM test is invoked one
would probably like to check what has been accomplished so far. Therefore the
module is integrated in the JStatCom application framework and can be run. For
this, no further Java programming is required, only two configuration files need to
be adjusted.

Figure 20 shows the file modules.xml in the text editor of the IDE. It should be
opened via the right mouse menu. The format of that file is XML and it already
contains some example entries which have been commented out. To integrate the
newly created module, the line

<Module class="com.myorg.TestFrame"/>

19

Fig. 22. Running application with new TestFrame module, execute method still needs to
be coded

should be added and the file should be saved. Note that the slash at the end is
needed. Afterwards the file app.bat has to be edited to add the location of the
classes to the classpath, see Figure 21. The folder with the compiled classes is bin
by default, therefore the line

SET CP = bin;%CP%

must be added. Finally, one can now start the application by clicking on the file
app.bat from outside the IDE software. It will invoke the application and the
module can be accessed via the menu item Modules. Figure 22 shows the running
program. Although nothing happens yet when Execute is clicked, except that some
string is printed to the standard output, there are already a lot of features available
provided by the framework.

For example, it is possible to import datasets, to use the time series calculator for
combining variables with arithmetic operations, and to edit and transform series
that have been read in. It is also possible to create dummy variables conveniently.
In the module TestFrame one can select variables, and the text field for the number
of lags validates input according to the interval set. All this general functionality is
provided by JStatCom and it is now up to the developer to use this infrastructure
for implementing calls to specific algorithms.

20

2.10 Step 9: Integrate Gauss Algorithm

After having programmed the GUI in Java, one has to prepare the Gauss code with
the algorithm. JStatCom provides a communications interface to an installed Gauss,
but the code has to be compiled as a gcg file first and it has to be put in a special
location. The Gauss procedure to compute the ARCH-LM test is given in the code
example. If one is only interested in the general workings of this example, one
could also use some shorter procedure or return just a number.

/**
* ARCH-LM test (Engle 82).
*
* resid - Tx1 vector with residuals
* q - number of lags to include in test regression
*
* result - Chi2_stat˜prob_chi2˜F_stat˜prob_F
*/
proc(1) = archlm_mytest(resid, q);

local y,ylags,Tnew,b,sigma,rsq,f,XX,r,prob_chi,prob_F;
y = (resid - meanc(resid))ˆ2;
ylags = shiftr((ones(1,q) .*. y)’,seqa(1,1,q),-exp(20))’;
ylags = delif(ylags,ylags[.,cols(ylags)] .== -exp(20));
Tnew = rows(ylags);
y = y[rows(y)-Tnew+1:rows(y)];
ylags = ones(rows(ylags),1)˜ylags;
b = inv(ylags’ylags)*ylags’*y;
sigma = (y-ylags*b)’(y-ylags*b)/rows(y);
rsq = 1-sigma/((y - meanc(y))’(y - meanc(y))/rows(y));
XX = ylags’ylags;
R = zeros(q,1) ˜ eye(q);
F = (R*b)’inv(R*inv(XX)*R’)*(R*b) / (q*sigma);
prob_F = cdffc(F,q,rows(ylags)-rows(b));
prob_chi= cdfchic(rows(ylags)*rsq,q);

retp(rows(ylags)*rsq˜prob_chi˜F˜prob_F);
endp;

It is assumed that the code is stored in the file mytest.src. This file should be put
in the subdirectory jgauss/src of the project directory. There are also some other
source files which are needed by the communications library. One should be aware
that Gauss procedure names should be unique across all files, therefore the name
archlm mytest was chosen. The convention is, that the filename is used as a suffix
to the descriptive name of the procedure.

As a last step, one must compile the source code together with the other files in
the directory to a file jgauss.gcg. This could be done manually with Gauss, but
JStatCom provides the batch script jgauss gcg.bat to make it easier to compile

21

also a large number of source files. For this the file jgauss/compile.xml has to
be edited:

<?xml version="1.0" encoding="UTF-8"?>
<GCGSet xmlns="java:com.jstatcom.engine.gauss" gcgfile="jgauss.gcg">

<GCGSet$SRCFile filename="src/jmplot.dec"/>
<GCGSet$SRCFile filename="src/jgauss.src"/>
<GCGSet$SRCFile filename="src/jgrte.src"/>
<GCGSet$SRCFile filename="src/tools.src"/>
<GCGSet$SRCFile filename="src/plot.src"/>
<GCGSet$SRCFile filename="src/mytest.src"/>

</GCGSet>

Only the last line has been added. By clicking on jgauss gcg.bat all source files
are compiled and the file jgauss/jgauss.gcg is being created. When the batch
script is started first it is likely that some settings for the Gauss software have to be
set. Those settings could also be set manually in the file
jgauss/engine config.xml. JStatCom needs to know the correct version number
and the location of the Gauss executable.

2.11 Step 10: Implement the Execute Routine

Fig. 23. Open TestFrame in Java editor, more convenient for manual coding than visual
editor

Now that the Gauss procedure archlm mytest is recognized by the Gauss engine,

22

Fig. 24. Hidden method body that should be expanded by clicking on arrow to the left

Fig. 25. Red underline and symbol to the left indicating some compilation problem

Fig. 26. A left mouse click on the error symbol gives a menu with possible error fixes, the
first option should be chosen here

it is possible to implement the Java call to that procedure. It should be mentioned
that JStatCom has its own data model to represent numbers, matrices, strings, string
arrays, dates, and date ranges. All data classes start with the prefix JSC, which is
short for JStatCom. For example, JSCNArray represents an m× n number array,
whereas JSCInt stores an integer scalar. The basic steps for the execute call are:

(1) Get Gauss engine instance
Engine engine = EngineTypes.GAUSS.getEngine();

(2) Retrieve the input data objects (// starts a Java comment)
// retrieves shared symbol by name
JSCNArray y = global().getSymbol("Y").getJSCNArray();

23

Fig. 27. Implementation of the execute call

// creates new integer object with the selected lags
JSCInt lags = new JSCInt("LAGS", getNumSelector().getIntNumber());

(3) Create an empty data object for the result of the computation
JSCNArray result = new JSCNArray("TESTRESULT");

(4) Call the Gauss procedure
// call the procedure with input and output parameters
engine.call("archlm_mytest", new JSCData[]{y, lags},

new JSCData[]{result});
(5) Display the result and set it to the symbol table

getResultField().append(result.display());
global().set(result);

Some manual Java programming is required here. This is done more easily with
the Java editor instead of the visual editor in the IDE. Therefore the VE should
be closed and the Java editor should be opened via the right click menu over the
TestFrame.java file, see Figure 23. It should be noted that by default this method
is hidden in the editor and should be expanded first, see Figure 24. When edit-
ing is started, one could use the automatic expansion mechanism by pressing the
Ctrl-Space keys together. If any typos occur, the editor indicates this by underlin-
ing the respective element and showing an error symbol at the left edge, see Figure
25. Often problems occur because a class name is only recognized after it has been
imported. However, by clicking on the error symbol one can easily fix those prob-
lems automatically, see Figure 26. The full method body is seen in Figure 27.

24

2.12 Step 11: Check running Module

Fig. 28. Running module with output from computation

Fig. 29. Symbol Control after the computation has finished

Now that everything has been programmed, the module should be checked again
via clicking on the app.bat script. After a series has been imported and selected,
a click on the Execute button will invoke the computation and the result will be
printed to the text area. The resulting numbers include the Chi-squared and F statis-
tics together with the corresponding p-values, see Figure 28. Furthermore, the re-

25

sult has been set to the symbol table of the module. This can be checked with the
Symbol Control which is accessible via the Control menu, see Figure 29.

Another small customization of the new application could be done by editing the
file app.properties in the project directory. It is possible to change the title, the
splash screen, the version number, as well as the about information of the software.

3 Final Remarks

This example should have motivated the use of JStatCom, although it has only
scratched the surface of what can be done with the framework. The module that has
been programmed could still be refined in several ways. There should be an input
check before the procedure call is actually carried out. Output formatting could be
improved as well. Furthermore, one should use a layout manager to make the GUI
look more professional, especially when it is being resized. Another important point
is that the module consists of only one class, which is appropriate for this simple
example, but which should be changed if more features are to be added. In that case
one should consider creating a separate class which only holds the panel. It could
then be added to the frame. If more features are implemented, the frame could get
a tabbed pane or a menu bar, and it could hold many panels instead of just one.

An important point is that the execute routine in its current form is defined inside
the GUI class. In general this is not recommended and JStatCom provides the so
called PCall system to encapsulate the calling logic in separate classes. This has
the advantage that the procedure calls could be maintained separately and that they
could also be used independently of the GUI classes. However, having this intro-
ductory example running is a good starting point for many possible enhancements.

References

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity, with estimates
of the variance of United Kingdoms inflations, Econometrica 50: 987–1007.

26

