
JMulTi/JStatCom - A Data Analysis Toolkit for
End-users and Developers

Technology White Paper

JStatCom Engineering, www.jstatcom.com

by Markus Krätzig, June 4, 2007

Abstract

JStatCom is a software framework that bridges the gap between the Java
world and special purpose programming languages for data analysis, math,
and statistics, like for example Aptech’s Gauss.1 It provides an extend-
able communications interface to a number of popular statistics packages,
a very flexible event-driven and thread-save data model, integrated sym-
bol management, configurable Swing GUI components, and an applica-
tion programming model. It can thus be used for the rapid development
of specific data analysis tools, which are typically either rich client desktop
applications, web components embedded in an EJB solution, or clients in
a Java-based parallel processing environment.

JMulTi is a popular Open Source tool for econometric modeling, especially
time series analysis, that was build with JStatCom.2 It uses the Gauss
Runtime Engine for its numerical computations and combines it with a
user friendly Java GUI, offering project management, innovative input se-
lection components, and powerful data handling features. Due to its mod-
ular structure, JMulTi can itself be extended and serve as a platform for
building sophisticated rich GUI clients for econometric analyses.

1www.aptech.com
2JMulTi is licensed under the General Public License (GPL) and is available from

www.jmulti.com.

JStatCom/JMulTi

1 Introduction

Today, the market for data analysis software is populated by many soft-
ware vendors and Open Source communities, offering a wide range of
very different products, from spreadsheet calculators to domain specific
GUI applications and special purpose programming languages. Although
some products have a significant market share, there is no such concen-
tration as, for example, in the market for office software. This heterogeneity
is driven by very specific demands that in turn attract the development of
specific software solutions.

One common feature of software development in that domain is that it typ-
ically requires considerable expert knowledge to implement the required
algorithms. It is also often directly related to research in the field. To meet
the needs of algorithmic development and to speed up coding, special pur-
pose programming languages have been developed wich typically offer a
convenient syntax for math and especially linear algebra expressions, op-
timized performance for certain matrix operations, many domain specific
functions and powerful plotting capabilities.

For domain experts, it is typically more effective to code in such a program-
ming language than in a general purpose language, like Java. However,
domain specific languages offer a limited set of features and often need to
be embedded in a solution that uses a general purpose language for GUI
building or web development. JStatCom fills this gap by providing a Java
environment that allows to easily embed calls to external computational
engines. Furthermore, it provides a programming model that has proven
to be flexible and convenient for the development of data analysis tools.
Certain aspects of the framework are highlighted in the following sections.

2 JStatCom System Overview

The basic components that make up a typical runnable program based
on JStatCom are shown in Figure 1. The application, for example JMulTi,
uses features provided by the framework to setup a GUI, to parse data
files of different formats, to manage projects, and so on. In JMulTi there
is code that configures components provided by JStatCom and that imple-
ments application specific logic, like gathering all user input for a certain
econometric model.

JStatCom/JMulTi

Furthermore, JStatCom provides the prerequisites to let JMulTi call Gauss
procedures which are defined in external files. The Gauss code contains
the procedures for the needed estimation and testing procedures, as well
as routines for graphical output. To run the Gauss code, some engine spe-
cific executables must be available, which for Gauss is either an installed
version, or the Gauss Runtime Engine, a distributable library version.

JStatCom Engine

JMulTi Procedures

 << Framework >>

 << File >> << Application >>

<< Executable >>

<< Communicate >>

<< Use >> << Call >><< Access >>

JAVA classes and
native libraries for
general tasks

external program or
library, e.g. GAUSS,
Ox, Matlab

files containing
methods to be
executed by engineanalysis

specific classes for
multiple timeseries

Figure 1: Components of JStatCom

JStatCom consists of several subsystems that depend on each other. Ev-
ery subsystem is related to a typical requirement for data analysis soft-
ware. The different subsystems are separately be looked at in the follow-
ing.

2.1 Data Model

JStatCom needs to represent data internally, because it maintains inputs
and results of numerical computations. Furthermore, it must be easy to
let data objects interact with GUI components that display or change the
underlying values. Therefore JStatCom provides special editing compo-
nents for each data type. For example, it is rather simple to use a table
that enables users to view and edit number matrices intuitively.

The data objects that are used within JStatCom on the Java side must
conform to the types that are used by a specific engine. For example, a
2-dimensional number array in Java has a natural counterpart in Gauss.

JStatCom/JMulTi

However, the Gauss procedure does not know anything about the Java
data type but expects a specific input value, which is in fact some C struc-
ture. JStatCom handles the required type conversions in both directions
automatically. The idea is to have a consistent data management system
within the framework that can contain various different types to adjust to
any potential modeling situation. Any technicalities and API specific details
are hidden from the developer.

2.1.1 Type System

JStatCom uses a metadata model to represent values of different types.
Core attributes are standardized for all data types by defining a very gen-
eral interface JSCData, which all specific types must implement. The
JSCData interface only specifies methods that are common to all potential
types. Any specialized functions to access or modify the contents of data
objects are defined in implementations of the interface.

Figure 2 shows the complete interface and most types that are currently
implemented. For the sake of clarity, only very few methods of the actual
data classes are given, a complete documentation can be found in the
API documentation. It should be noted that the implemented types are re-
sponsible to facilitate interaction with GUI components and to operate as
storage units, instead of carrying out computations on them directly. For
example, the JSCNArray class is a basic matrix class for JStatCom, but
it does not try to compete with existing Java matrix implementations for
linear algebra calculations. The benefit is that the interfaces of all types
are kept quite simple. However, data can easily be moved from JSCData
types to instances of specialized math classes. But typically sophisticated
linear algebra calculations are done with the computational engine, which
is especially suited and optimized for that purpose.

A distinguishing feature of the JStatCom Type System is that listeners can
be installed on all instances of JSCData. This makes it easy to implement
specific actions that are triggered when a data object changes its value.
Another feature is that all data objects can take an empty state where no
value is stored. Listeners can also be notified about changes from empty
to non-empty, which is much more efficient and in most cases sufficient as
a trigger event.

JStatCom/JMulTi

JSCData

<< interface >>

+name():String

+type():JSCTypes

+clear():void

+isEmpty():boolean

+copy():JSCData

+isEqual(o:JSCData):boolean

+addJSCDataListener(evtListener:JSCDataListener,evtType:JSCDataEventTypes):void

+setJSCProperty(type:JSCPropertyTypes,val:Object):void

+getJSCProperty(type:JSCPropertyTypes):Object

JSCInt

+intVal():int

+setVal(a:int):void

JSCNumber

+doubleVal():double

+setVal(a:double):void

JSCNArray

+doubleArray():double[][]

+rows():int

+cols():int

+setVal(a:double[][]):void

JSCString

+string():

+setVal(a:String):void

JSCSArray

+stringArray():String[][]

+rows():int

+cols():int

+setVal(a:String[][]):void

JSCVoid

+setVal(a:Object):void

JSCDate

+setVal(a:TSDate):void

+getTSDate():TSDate

JSCDRange

+setVal(a:TSDateRange):void

+getTSDateRange():TSDateRange

Figure 2: Type System

JStatCom/JMulTi

2.1.2 Symbol Management

The Type System introduces various ways to store and manipulate data of
different kind. However, a common problem when designing applications
for complex models is that various classes and GUI components need to
share data values. The user interface typically consists of several compo-
nents that handle different modeling steps, like specification, estimation,
diagnostics and forecasting. All these components need to have access
to the model state. It would certainly not be a good idea to exchange data
directly between these components, because this would create unneces-
sary dependencies among them.

<< interface >>

SymbolScope

+ global ():SymbolTable
+ upper ():SymbolTable
+ local ():SymbolTable

SymbolTable

+set(a:JSCData):void

+get(a:JSCTypeDef):JSCData

Symbol

+ type :JSCTypes

+ getJSCData():JSCData
+ setJSCData(a:JSCData):void

<< interface >>

JSCData *

1

 *

1

0..1

Figure 3: Accessing shared data repositories

Figure 3 gives a simplified overview of the Symbol Management system
which is the JStatCom solution to address this issue. The class
SymbolTable is an aggregation of an arbitrary number of Symbol in-
stances. Each symbol object represents exactly one instance of JSCData.
Symbol objects are identified via their name in the symbol table, which op-
erates as a shared data repository. Via the symbol table it is possible
to access the symbol elements and finally the actual data values. Sym-
bols can be understood as pointers to variables. The referenced values,
instances of JSCData, can be changed efficiently during runtime. The
SymbolTable can represent the state of arbitrary models as an aggrega-
tion of symbols of different types. Therefore it is used to represent arbitrary

JStatCom/JMulTi

SymbolScope

<< interface >>

ModelFrameModelPanel

*

Figure 4: SymbolScope inheritance

models and to access the model data from various GUI components with-
out creating dependencies among them.

One might ask, whether this is not just another way of introducing global
data. In a way it is, but there is another part of the Symbol Management
system which allows for fine-grained definition of access scopes. JStat-
Com offers a way to limit the visibility of symbol tables to components that
belong to one model. Furthermore, it is possible to share data on different
levels, which is somewhat similar to global and local variables. For this,
the interface SymbolScope is provided. Implementations of this interface
have access to symbol tables on three different levels: global, upper and
local. Every symbol table keeps a reference to the next higher symbol ta-
ble in the hierarchy defined by implementations of SymbolScope.

To be more specific, Figure 4 shows, how the SymbolScope interface is
implemented by components of the model. Every model should be imple-
mented with a ModelFrame as the top level GUI container. This can be
the starting point for any application based on JStatCom. A ModelFrame
is typically a composition of a number of ModelPanel containers which
hold the buttons, labels, tables, and other components. Both classes pro-
vide access to the Symbol Management system and can use it to set and
retrieve variables. The SymbolScope interface imposes a hierarchical or-
dering of symbol tables. The ModelFrame and ModelPanel implemen-
tations of this interface use the component hierarchy for this.

JStatCom/JMulTi

Figure 5: Screenshot of symbol frame with selected NARRAY

Developers only need to understand that ModelPanel instances can be
used to define access scopes. One could also think of other possible im-
plementations of SymbolScope, reflecting different hierarchical schemes.
However, for the purpose of GUI building this solution has proven to be
very fruitful. Components may even register listeners to symbols which
are notified in synchronization with the Event Dispatching Thread.

Storing data in symbol tables is not only meaningful when variables should
be shared, but it can also be used to publish results in the Symbol Control
system, which is another subsystem of JStatCom that provides access
to variables that are currently used. Figure 5 shows a screenshot of the
graphical component. It presents a tree view of the symbol table hierarchy
and it has components to display and export all symbols that have been
put in one of the symbol tables.

JStatCom/JMulTi

<< interface >>

Engine

+ call (procName :String ,args :JSCData[],rtn :JSCData[]):void
+ isValid (type :JSCTypes):boolean
+ shutdown ():void
+ stop ():void
+ load (module :String ,loadType :LoadTypes ,args :JSCData[]):void

OxEngine GaussEngine MLabEngine StubEngine GRTEngine

Figure 6: Engine interface and available implementations

2.2 Engine System

This section introduces the system for communicating to different execu-
tion engines. Typically these engines rely on external resources, which
means that extra software packages or libraries must be installed. There
are software vendors who provide redistributable stand-alone versions of
their computational engine, for example Aptech with the Gauss Runtime
Engine. The advantage is that users do not need any extra packages to
be installed on their computer.

The framework provides access to different engine implementations via a
unified interface. Figure 6 presents the complete interface Engine and all
implementations currently available. Clients should use the engine only via
its abstract implementation, thus making similar calls for every implemen-
tation. The solution found manages to integrate engines with very different
characteristics and calling conventions.

2.3 Component System

JStatCom offers a number of innovative Swing components that closely
work together with the Symbol Management System but can also be used
without it. For example, sophisticated table components can be easily
configured by just setting the name of a symbol that should be displayed

JStatCom/JMulTi

and/or edited. A large set of predefined renderers, editors and mouse lis-
teners exist to configure table displays quickly and reliably. As an example,
see Figure 7 with tables displaying user selectable subset restriction ma-
trices in an equation system.

Figure 7: Screenshot of manual/automatic subset specification for the VAR
analysis in JMulTi

3 Conclusion

This whitepaper just scratched the surface of what can be done with JS-
tatCom. The interested reader is pointed to the API documentation, the
tutorials and the architecture documentation.

JStatCom can be used as a key component in software development projects
for data analysis tools using Java. It provides a flexible yet powerful pro-
gramming model that relieved developers from many time-consuming tasks.
JStatCom is Open Source and can be extended and modified by users
under the terms of the Lesser General Public License, and is therefore
business friendly, as it may be used in closed source projects as well.

JStatCom Engineering offers professional support and services related
to the framework.

